
Twisted condensates of quantised fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 241

(http://iopscience.iop.org/0305-4470/19/2/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 241-258. Printed in Great Britain 

Twisted condensates of quantised fields 

F Gallonei, A Spananit ,  R F StreaterS and C Ubertone§ 
t Dipartimento di Fisica, Via Celoria 16, 1-20133 Milano, Italy, and Istituto Nazionale di 
Fisica Nucleare, Sezione di Milano, Italy 
$: Department of Mathematics, King’s College, Strand, London WCZR 2LS, UK 
8 Dipartimento di Fisica, Via Celoria 16, 1-20133, Milano, Italy 

Received 19 February 1985 

Abstract. We construct some quasi-free pure states of free quantised fields in (1+1)  
dimensions that are localised in the sense of Knight. We consider massless or massive 
Dirac fields forming a U(n) ,  n 1, multiplet and subject it to a local gauge transformation. 
We also subject a doublet of massive Klein-Gordon fields to local SO(2) transformations. 
We find the conditions that the resulting automorphisms are spatial in Fock space. In some 
cases the conditions tum out to require that certain parameters, identified as the winding 
numbers of the gauge, are integers. It is argued that this integer labels states of various 
charge. 

1. Introduction 

The only known relativistic quantised fields obeying the Wightman axioms in (3 + 1) 
dimensions are free and generalised free fields and their Wick powers. But these ‘bare’ 
fields give poor descriptions of realistic particles ; for example, we expect charged 
particles to be accompanied by their clouds of soft photons, or gluons in QCD. Haag 
et al [24] have suggested that charged states ought to be obtained from the vacuum 
by a local automorphism of the observables. Of all the states to which this gives rise, 
the ‘states of interest’ will be those belonging to a relativistically covariant representation 
with positive energy. 

When these ideas are applied to the free Dirac field of zero mass in (1+1) 
dimensions, we have been able to find some non-Fock relativistic representations 
[2-31. These might do to describe particles with a cloud around them. But the results 
of [4] prove that if the mass is positive, or in more than one space dimension, there 
are no quasi-free non-Fock covariant irreducible representations of the free field. We 
must therefore, in these cases, look for more realistic models of particles among the 
Fock states, which are, of course, covariant and of positive energy. 

In this paper we show that Fock space contains some states obtained from the 
vacuum by a local gauge transformation, and which are labelled by topological quantum 
numbers. Moreover, they are localised in the sense of Knight [ 5 ] :  this means that on 
a suitably chosen algebra of observables, the states coincide with the vacuum outside 
a compact set. 

Let us recall a model where ‘topological’ quantum numbers arise, which can be 
identified with charge. Consider the Dirac field in (1 + 1) dimensions; in its second 
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242 F Gallone et a1 

quantised form, the theory is defined by the CAR algebra d generated from the smeared 
creation and annihilation parts, $'(f), +- (g ) ,  where f and g lie in the one-particle 
space K = L 2 ( R ,  C2). We identify K with the set of complex initial data for the solutions 
to the c-number Dirac equation ( B  + m)+ = 0. Then the second quantised smeared 
Dirac field is $( f )  = $'(f) + $-(f) interpreted as 

+(f) = I +(x)f(x)  dx. 
R 

The usual complex structure on K is not the 'physical' one [6]; the generator of 
time-evolution is not bounded below in K. We choose a different complex structure 
which has the same real part but a different imaginary part. The PoincarC group P I  
acts on K, since it acts on solutions of the Dirac equation. This action preserves the 
real part of the usual scalar product on K and so defines automorphisms {ua,,, (a ,  '1) E 

P i }  of the CAR algebra d over K. These automorphisms are spatial in the 'physical' 
representation IT,,, of LTZ [6], that is, are given by unitary operators U(a ,  A): 

u , , , ~ ( A )  = U ( a ,  A ) A U - ' ( a ,  A )  

for all A E  ~ , ( d ) ,  (a, A )  E PI. The representation IT, is determined by the choice of 
'physical' complex structure on K,  and this in turn is determined by the projection 
operator PT onto the positive-energy states, defined by 

where yo = ( y  A), ys  = y o y l  = (6 -:), and p and U,( p )  = ( p ' +  m2)"', act on the Fourier 
transform of K as multiplication operators. We shall use this notation for the operators 
-i d /dx  and (-d2/dx2+ m2)'I2 on L2(R, C 2 ) .  Then the physical representation is 

- 
+(g) = ITm(a(g)) = + aF(P,"g). (2)  

Here, g E K ,  aF is the Fock representation using the usual complex structure of K ,  and 
the bar is complex conjugation in K. Equation ( 1 )  makes clear the dependence on m. 

In the model discussed in [3,7-81, we put m = 0 and we subject K to unitary 
multiplication operators Tap 

(Tapf)(x) = {exp i [a (x)+  r5P(x)l}f(x).  (3)  
In (3), a and p are C" functions, R + R  with a ' €  9, P'E 9 and a(-co)=p(-co)=O. 
It is known that for each a, p there is a unique automorphism rap of d such that 

T a p ( a ( f ) )  = a ( T a p f ) ,  f~ K. (4) 

We say that rap is induced by Tap. The equations of motion are invariant under the 
corresponding 'rigid' transformations 

TR(e)f= e'% T,"( e,)f= e1B,Y5f, ( 5 )  

whert 0, Os are now constants. The equations of motion are not invariant under (3). 
The local gauge and axial gauge transformations are not always spatial. We prove 

[3,8] that rap is spatial in  IT^ if and only if a, p obey 

a ( a ) + p ( c o ) = 2 I T k  a ( m )  -p(co) = 2 n n  (6) 
for some integers k, n. 
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The integers k, n are the number of twists in the top (bottom) component of the 
gauge field, respectively, and are related to the charge and axial charge created by the 
unitary operators implementing the T , . ~  [8]. According to the analysis of Labontk 
[9], k, n will be the Fredholm indices of P+T,,,P+ and P+T,,,P+ respectively. These 
indices have been computed by Carey, Hurst and O'Brien, using the theory of Toeplitz 
operators [7] and indeed do turn out to be the number of twists, k and n:  k is the net 
number of right-moving particles and - n the net number of left-moving particles, 
antiparticles being counted negatively. 

This very satisfactory 'topological' theory of charge might suggest that the require- 
ment that gauge transformations be spatial is in itself a good physical principle. But, 
if in equation (6) k and n are not integers, then we get non-Fock representations, but 
ones that are P l  covariant [3]. Such representations cannot be excluded on physical 
grounds. We must conclude that the C* algebra programme does not predict charge 
quantisation for this model. 

For free fields, the existence of such non-Fock covariant representations is an 
infrared phenomenon peculiar to (1 + 1) dimensions [4]. There are spacetime covariant 
infrared representations of massless fields in ( 3 +  1) dimensions [ 101 but these are not 
L l  covariant. It is to obtain covariant states, then, that we investigate spatial 
automorphisms; the idea is to find localised states in Fock space carrying quantum 
numbers defined geometrically or topologically. We get the state U,qF by applying 
the unitary operator U, that implements the automorphism 7, to the vacuum state TF. 

So far we have discussed the field algebra d. It is open to us to specify what the 
observable algebra is. Naturally we would want it to obey the Haag-Kastler axioms, 
and it is natural to take it to be the subalgebra do of .d of elements invariant under 
the exact internal symmetries, Go say, of the model. It can then be hoped that, while 
our quantum numbers specify states in the same representation of d (the Fock 
representation), they will indeed label inequivalent representations of do. 

This would certainly be true if the scheme suggested by Haag et a1 [24] applied. 
This is not so clear, though, as the scheme depends on the initial choice of the 
representation of the algebra of the observables on the vacuum sector and there is no 
clear-cut choice for this representation, as far as we can see. 

For a Dirac field of any mass, rigid gauge transformations, i.e. $ ' (x )  = e"$(x) with 
8 independent of x, are always symmetries. One should then take .do to consist of 
gauge invariant operators, and be interested in automorphisms mapping do to itself. 
In the real Clifford algebra theory we regard K as a real Hilbert space, with scalar 
produce Re(, ) K .  An automorphism is then any orthogonal, real linear transformation 
T of K. However, to commute with rigid gauge transformations, such an orthogonal 
map T must obey e"T = T ele, i.e. T must be complex linear, i.e. unitary on K regarded 
as a complex Hilbert space. So we limit our discussion to unitary one-particle transfor- 
mations. 

2. The models 

In this section we give the models and summarise the results as theorems. The proofs 
are deferred to § 3. 

Model 1. We take a single Dirac field CC, of mass m > 0. Carey et al [7] show that in 
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the massless case, of automorphisms of the form 

$'(x) = A (x)$(x) A :  R +  M2(@) ( 7 )  

only those where A is diagonal can be implemented in the relativistic Fock representa- 
tion. They also give an argument, based on continuity in mass, which shows that the 
same should hold in the massive case. However, the projection P," is not norm 
continuous at m = 0, so some readers may need an independent argument. Indeed, 
their result does follow from the methods of this paper. We therefore choose A in (7 )  
to be diagonal 

A(x) = Tap(x) =exp i (a (x)+P(x)y , ) .  (8) 

Again we choose a ( -00)  = p (  -00) = 0 and take 4, = limx+m a (x), 

q = lim p ( x ) ,  a, P E C"@) with a' ,  P'E 9(R) .  
x - 5 

Note that the transformations (7) are done on the field $ at time t = 0. The fields at 
a later time t are determined by the fields at t = O  by the equation of motion 
(8 + m)$(x, t )  = 0, and the action of the automorphism rap induced by Tap on $(x, t )  
is thus determined by linearity. The action on $*(x) is fixed since rap is to be a 
*-automorphism, and naturally its action on products of $ and $* is then uniquely 
determined. The action on $(x, t )  is not purely a local gauge transformation (unlike 
the massless case [3], a circumstance allowing the exact solution of the Schwinger 
model [8, 111). 

The 'exact symmetries' of the model can be expressed in terms of the 'rigid' 
automorphisms rR( e), r i (  8,) induced by the one-particle operators T',, T i  

( TR(e)8)(x) =ei8gs(x) (TR(e5)g)(x) = exp(i8,y5)g(x), (9) 

8, 8, being constants. These are symmetries of the theory for any value of 8, but only 
if 8, = n r :  axial symmetry is broken by the mass. 

We then have the following result. 

Proposition 1.  The automorphism rap is implemented in r, if and only if q = nT, n E Z. 

Remark 1 .  We observe that T~~ is implementable if and only if T & ( ~ o )  is one of the 
implementable rigid transformations, i.e. one of the true symmetries making up the 
group Go. Defining the observables do to consist of Go invariant elements, we see 
that the state we get from the vacuum, by applying the implementable rap, is localised 
in the sense of Knight, and on do, T . ~  is the identity outside a compact set. In fact, 
our proofs work equally well when 8 is not constant outside a compact set, but 
converges rapidly enough to a constant at fa. 

Remark 2. A recent paper by Carey and Ruijsenaars [ 2 5 ]  contains a result which can 
be combined with our proposition 4 (see below) to give stability for the charged states 
created by axial gauge transformations. For, if 8 E C"(R) is such that @(-a) = 0 and 
e(m) = 2rr, our proposition 4 implies that 
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while their results on the Fredholm index imply that 

Indieid 0 1  '1 = l .  

From the additivity of the index we then get that 

e id /2  0 
Indl = Ir"(eiY5e'2) = 1. 

On the other hand, they take for granted the implementability of local gauge transforma- 
tions such as le: 71, where eie is their standard kink (called (+ in their paper); such 
implementability follows at once from the proof of our proposition 1. 

Model 2. Now consider two Dirac fields with any masses, rn,, m2, positive or null, and 
the CAR algebra over the one-particle space L2(R, C4) = L2(R, C 2 ) 0  L2(R, C2), the space 
of initial data for two Dirac equations in (1 + 1) dimensions with masses m,, m2 
respectively, The physical representation T,,,,,,,~ is then the skew tensor product of 
irmI and irm2: explicitly 

ir,,,,,,,(a(g)) = a*, ( (P?@ Y")g)  + a,((P?O P?)g) 

where g E L2(R, e'), aF is the Fock representation (over L 2 ( R ,  C4) now), and PT are 
as in (1). 

We subject the algebra to local automorphisms T~ defined by unitary operators To 
on L2(R,  C4) of the form 

COS e(x) 0 sin e(x)  
0 cos 8(x) 0 

(10) 0 cos e(x) 0 (TogNx) = -sin e(x)  i 0 -sin e(x) 0 

e being a C'" function which vanishes at --CO and whose derivative has compact 
support. Put Q = f3(+co). The corresponding rigid transformations, denoted TR( p ) ,  
are those given by (10) when e(x) = p, independent of x. If m, = m2 then the rigid 
automorphism rR( p )  is spatial for all p ;  if m, # m,, only the discrete symmetry p = nir, 
i.e. i,b+ -4, is left; n is to denote an integer. 

Proposition 2. 

Q = nir. 
(a) If m, # m, and both m, and m, are positive, then T~ is spatial if and only if 

(b) If m, = m, # 0, T@ is spatial for all Q. 
(c) If either m, or m2 vanishes, then is spatial if and only if Q = 2nir. 

Model 3. This is the generalisation to the group U ( n )  x U ( n )  of models 1 and 2. For 
simplicity we only fully consider the cases where all the masses are positive and 
different, or they are all zero. 

Thus our transformations are of the form 
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with U(x), V(x) E U ( n ) ,  acting on n Dirac fields CL1,. . . , +,, of masses m,, . . . , m,. We 
avoid off-diagonal elements since they are never implementable. As usual, U(-0O) = 
V( -00) = 1 ,, and U, V are C" functions, constant outside a compact set. Let T~ denote 
the induced automorphism. 

The subgroup { W :  U = V} gives gauge transformations, and the subgroup { W: U = 
V*} gives axial gauge transformations. The corresponding rigid transformations are 
implementable if and only if they are symmetries of the theory. 

Proposition 3. 
(a)  If m, =. . . = m, = 0, then T~ is spatial if and only if W ( a )  = lzn. 
(b) If all masses are non-zero, then T~ is implementable if and only if W ( a )  is a 

rigid symmetry of the theory. In particular, if all masses are unequal, W ( a )  = *lZn 
gives the only spatial automorphisms. 

Both in proposition 2 and proposition 3 we meet the curious phenomenon that by 
breaking the gauge symmetry, putting the masses unequal, we quantise the axial charge 
and seem to stabilise these states. Axial gauge symmetry is broken whenever the masses 
are positive. This quantises charge. 

The gauge solitons, obtained when U = V,  are not 'topologically stable', because 
we can prove the following. 

Proposition 4. Let U =  V and m,>O, j =  1, .  . . , n. Then the index of P+ WP+ is zero, 
where 

n 

] = I  
P+ = 0 P,") 

Although there is no associated quantum number absolutely conserved in time 
when U = V ,  the number of twists will give a broken quantum number labelling 
resonances. 

Proposition 5. Let m, = m, = . . . = m, = 0. Then the net number of right-going particles 
is the index of P+Tu1P+, and this is minus the winding number of det U about 0. The 
net number of left-going particles is the index of P+TIvP+, and this is the winding 
number of det V about 0. 

This proposition is the obvious generalisation of the result of Carey et a1 [7] for 

Now we come to our boson model [12]. 
n = 1 in the massless case. 

Model 4. We have two free massive scalar fields, 41 and 42 of masses m,>O and 
m2 > 0, and consider transformations 4 + 4' given by 

done at t = 0. Since bosons obey a second-order wave equation, the automorphism is 
specified only when the transformation of both 4 and d is given. We choose O(x) of 
the form 

cos e(x) sin e(x) 
-sin e(x) cos e(x) 

@(x) = 



Twisted condensates of quantised Jields 247 

@( -CO) = 0, @(+CO) = Q, @’E Actually, (12) is shorthand for a symplectic transfor- 
mation on the one-particle boson space L2(R,C2), and we chose it orthogonal to 
preserve the reality of 4j and 4y 

Because of the infrared singularity, (12) makes no sense when m,  or m2 is zero. 
Let 78  denote the induced automorphism of the CCR algebra of the two fields +,, +*, 
represented in the relativistic Fock space. 

Proposition 6. 
(a) If m ,  = m,, T~ is spatial for any value of Q. 
(b) If m ,  # m,, 78 is spatial if and only if Q = n7r. 

Remark. The implementability is decided by the Shale criterion [ 131 for bosons. This 
is a quadratic condition, and we have no index theory for such operators. Nor is it 
clear whether the quantum number n obtained in (66) is stable, and what it is in terms 
of the (many) conserved quantities of free fields. 

We end this section with some comments on the models. When these local 
automorphisms correspond to a rigid symmetry, and there are no twists, then we usually 
get a one-parameter group of implemented gauge or axial gauge transformations. The 
generator of this group is the corresponding smeared current, obeying Lundberg’s 
commutation relations [ 141. The implementing operators themselves give a multiplier 
representation of the corresponding current group. 

We have said many times that the spatial rigid transformations are precisely the 
symmetries of the Hamiltonian. Indeed, it is an immediate consequence of the Wight- 
man reconstruction theorem that if a rigid transformation is a symmetry of the Wight- 
man functions, then it is spatial [15]. The converse of this is not so well known: if a 
symmetry is explicitly broken, say by a mass term, then it is never spatial, i.e. the 
symmetry is spontaneously broken as well. This follows from Haag’s theorem, in the 
nice form given by Fabri and Picasso [16]. 

One can see, if masses are not zero, that an automorphism T~ is spatial if and only 
if T(m)  is a symmetry: T ( m )  E Go (we have factored out one copy of Go by putting 
T ( - E )  = 1) .  Thus we have verified the idea of Coleman [17], that topological states 
should be labelled by maps from spatial CO (here *E) to the unbroken part of the 
gauge group Go. This result needs modifying if some masses are zero. It seems that 
T ( + a )  E Go then leads out of Fock space, but always gives a covariant state. 

Proposition 1 seems to contradict the iesult, stated in [7], that a local gauge 
transformation is implemented for the massive case if and only if it is implemented 
for the massless case. But in fact these authors, and also Segal [18], postulate from 
the start that q or q5 is 27rn; they take space to be a torus. 

In the fermion models 1,  2 and 3, the index is topologically unstable if we allow 
the transformations to run over the full set of real orthogonal transformations of the 
one-particle space regarded as a real space. Then the index is only conserved mod 2. 
We are not worried by this since these more general transformations are not complex 
linear and violate the gauge invariance: do is not mapped to itself. 

The result 6 ( a )  was announced by Bonnard and Streater [12]. In the verbatim 
report of a lecture on this modelt it was stated that the automorphisms of this model 
lead to inequivalent representations of the observable algebra. This remains an open 
question. 

t Published in 1975 Trudy Mat. Inst. Steklou 135 83-8. 
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3. Proofs 

Proposition 1. Recall that rap is spatial in IT, if and only if both P," TapP_" and P!' TapP," 
are Hi1bert;Schmid: ( HS) operators [ 19-20]. We work with the Fourier transformed 
operators P," and Tap given by 

where w ( k )  = ( k 2 +  m2)1'2 and 

,Og 2 7  '5 ( f ) ( p )  = - dx e-ipx(eia'x' cos ~ ( x )  + i e"(*' sin ~ ( x ) y ~ )  J dq eixqg( q )  (14) 

for g E L'(IW, c'). 

is then a 2 x 2  matrix whose entries are operators on L*(R, C). Thus 
We write L2(R,  C') = L2(R, C)OL ' (R ,  C) and @ , " f a p f i Y  (and similarly @ Y f a p @ T )  

is HS if and only if each entry is. Set ~ * ( x ) =  a(x)*tp(x) ;  SI, turns out to be 

and 

To see that A is HS for all functions a, /3 considered, set y(x) = exp(it)+(x]). Observe 
that, in the sense of distributions, ip?( p )  = ?'( p )  (here and in the sequel, h will be the 
Fourier transform of h E 9"(R) and q' will denote the Fourier transform of y ' =  dy/dx).  
Since y'=iT:(x) exp(iq+(x)) is in 9, 9' is too, so that ipq(p) is a distribution 
identifiable with a function of Y ( R ) ,  which we also call q'. 

Thus 
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Now, W (  p ,  q ) / (  p - q )  is in C"(R2) after it has been defined by continuity at p = q ;  
and the following inequality holds: 

We thus estimate the Hilbert-Schmidt norm of A by 

and this is finite, since ?'E Y(R). 
As for the operator B, set H ( x )  = exp(ig+(x)) -exp(iq-(x)) 

H ( X )  = H(X) - H(co)e(x)+ H(CO)O(X) = K ( X )  + H(co)e(x) 

where H ( m )  = limx.+m H ( x ) ,  K ( x )  = H ( x )  - H(co)O(x) and e(x)  is the step function. 
Now K EL'([W)~L'(IW), so the kernel of B is divided up into the function 

[ ( 2 ~ ) ' " / 8 7 r ] m ' ( I ? ( p -  q ) ) / ( w ( p ) w ( q ) )  which is in L2(R2), and a part arising from 
O(x), which is the crucial one. Recall that e^( p )  = z(P?(l/p) - i d (  p ) )  where z is a 
real numerical factor. Thus the following operator must be HS 

inf-(P) 
w ( P ) 2 .  

dq f(q)-- ( R f ) ( P )  = ?? J-- 
-x w ( p ) w ( q ) ( p -  4 )  

Now let f be a real function; then we get 

which shows that R is not HS, as a multiplication operator by a non-vanishing function 
cannot be such. We conclude that SI, is HS if and only if H ( m )  = 0, which gives 

O =  lim [exp(iT+(x)) -exp(iv-(x))]  =2 i  lim exp(ia(x))  sin p ( x )  
x - x  X-CC 

i.e. if and only if q = limX+- P ( x )  = n7r, n = 0, + I , .  . . . This proves that if q # n7r, 
P," TnpP? is not HS, so thatATapA is po t  spatial. 

In order to prove that PyTnpP?  is H S  if q = n r  we must consider the other S,. 
The analysis of S22 is entirely similar to Sll ,  so we move on to SI2. We have 

A A A  

Again, the second term in square brackets gives a HS operator for any admissible choice 
of q-, whereas the first, by the same argument developed for Sll,Ais HS if and only if 
q = nT. The analysis of S 2 ,  is identical, which shows that PTfapP?  is H S  if and only 
if q = n7r, n = 0, i l ,  . . . . The same result is proved for P?Ta,P," by mimicking this 
proof, mutatis mutandis. 
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It is worth mentioning that the results for the massless case can easily be obtained: 
when M = 0, SI2 = S2,  = 0 and SI , is simply 

An easy calculation shows that the square of the HS norm is 50" dp j!!m d q l e (  p - 
q)j2 which is finite if and only if ~ + ( x )  + 0 as x + CO. For S2, we need v-(x) + 0 as 
x + CO, so that both (Y + p and a - /3 must have tails at cc equal to an integer multiple 
of 2 ~ ,  which is the known result [3,8]. 

Proof of proposition 2. We use the same criterion as f y  pr?positionA l,Ai.z. we check 
for which choices of the function 13 the operators P+TeP- and P-TeP+ (and the 
corresponding rigid operators)Aare HS; Here @- is the Fourier transform of the 
projection P- = P ? O  P? and P+ = 1 - P- .  Explicitly 

To begin, @+fog-, acting on the space L2(Iw, C4), may be written as a matrix of sixteen 
operators on L2(R, C) which we shall denote by where each of the pairs ij, lm 
runs through the values 11,12,21,22. Similarly, P- TOP+ will consist of sixteen operators 
S;,,,,,. If and only if all of the 32 operators S+,,, Sb,,,,, are HS will the automorphism 
7 0  be spatial. Now it is useful to have a general sufficient condition for the convergence 
of an integral of the sort that one meets here. This condition is inserted here. 

Convergence condition. Let W,,  W2 be two measurable functions R + R', bounded and 
satisfying both the following requirements. 

(a) The restriction to Iw+ of either W, or W2 belongs to L'(Iw+). 
(b) The restriction to R- of either W, or W2 belongs to L ' (R- ) .  

Then 
Let G be a positive function in L'(Iw) such that Ix(G(x) also belongs to L'Iw. 

dp  dq W,( p )  W 2 ( q ) G ( p  - q )  < W. The proof of this condition proceeds 
quite simply by analysing separdtely what happens in the four regions bounded by the 
p and q axes. Set 
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where * i ( p )  = w,(-p). Because of condition (b), 6', obey (a) so the estimate for I4 
applies. For I2 and Z3 we have 

1 3  = lom dp dq W,(P) W2(q)G(p - 4 )  

0 

s A2 lom dp 1 dq G( p - q )  

s A* lom du u G ( u )  < 03 

-m 

and 

since k,, G2 are bounded and 6 has the same integrability properties (a) and (b). If 
instead of W, belonging to L ' (R+)  we had W,  belonging to L'(R-) when restricted to 
R-, the proof would run through symmetrically for I, and 14, and identically for I2  
and 13. This completes the proof of the convergence condition. 

This condition, along with some knowledge acquired through the proof of proposi- 
tion 1, will permit us to check the HS character of our 32 operators just by inspecting 
the kernels. This is lengthy but straightforward and we limit ourselves here to spelling 
out the details in a couple of cases, in part (a) of the proposition. 

Proof of proposition Z(a). 

= 1 dx e-ipx cos e (x)  

This operator does not mix the masses, and is HS for any admissible choice of 0, as 
is seen by observing that it is identical with the operator called A in the proof of 
proposition 1, with the function exp(i.rl+(x)) replaced here by cos e(x).  

A more crucial, mass-mixing, operator is 
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The function in brackets does not vanish when p =  , as ml,Z m2.  Then if Q =  

the squared kernel is then 
limX+= O(x) = nr ,  so that sin O(x) E Y(R), put g ( p )  = ;4 2r(s in  e )  ( p ) ;  the integral of 

and it satisfies the assumptions of the convergence condition as W , =  
[ ( w l ( p ) + p ) / w l ( p ) 1 2 ,  W, = [ ( w 2 ( q )  - q ) / w 2 ( q ) I 2  are both positive and bounded, and 
W, E L'(IW-) on R-, while W2€ L ' (R ' )  on R+. Thus is HS. All the other operators 
are dealt with in an entirely similar way. One feature that is obviously everywhere 
present is that the operators containing cos O(x) are non-mass-mixing, and are HS as 
in proposition 1, even when Q # r say. The mass-mixing terms contain sin O(x); 
here implementability is helped by the zero of sin e(x) when Q = nr. The same 
phenomenon occurs in the boson proof, proposition 6. 

The operators S:,;,,,, are dealt with by changing the signs of w ,  and w2. This does 
not upset any convergence properties. 

To complete proposition 2(a) it remains to prove that for Q # n n  the automorphism 
is not implemented. To this end it is enough to find one of the Sijlm, S;,,,, that is not HS. 

Consider 

J ( S , 1 , z 2 g 2 2 ) ( p )  = dx e-ipx sin O(x) dq eiXq J 
and split sin O(x) as sin 6(x)  = K ( x )  + qO(x) as in the proof of proposition 1, with 
K E L2(R) n L ' ( R )  and q = limx+m sin O(x) # 0. Now the part of the kernel containing 
K is square-integrable, whereas the part coming from qO(x)  is not, as the pole of 
6 ( p )  at p = 0 is not cancelled by the vanishing of 

"( 1 +L) -A( 1 +L) 1 
W l ( P )  w d q )  w 2 ( q )  W l ( P )  p = q  

which is not zero if m ,  # m2. 
This proves part (a). 

Proofs of propositions 2(b) and 2(c). We noticed in the proof of part (a) that the 
non-implementability when Q # n r  was caused by the factor 6 ( p )  which is not 
cancelled if m ,  # m2, but is if m ,  = m2. This, together with techniques of proposition 
1, is enough to prove 2(b). 

For 2(c), where one of the masses is zero, implementability is obtained for Q = 2 n r  
only, by the same techniques. 

Proof of proposition 3. (a) When the masses are zero, the positive-energy projection is 

and the general Tu, element has the form 
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where a, p . . . denote smooth complex-valued functions on .[w and also, in the sequel, 
the multiplication operators by a and p. The typical elements of P+ WP- are 

@ ( p ) a , @ ( - p )  @ ( P ) P l @ (  -P) I @( -P) Q 2 @ ( P )  and @ ( - P M , @ ( P ) .  

Just as in the case n = 1, we are led to integrals of the type (15), with aj, pj replacing 
exp(i.r)+(x)) there. These are then HS if and only if aj(+co) = aj(-co), pj(+c0) =@,(-CO) 

which says W(co) = 1. 
(b) In the massive case, the projection onto positive-energy states is 

acting on the direct sum e:=, L2(R, C2).  Then writing wj for the pseudo-differential 
operator ( m,2+p2)'l2: 

0 

a* . . .  . .  

P I  0 

0 P z  ' 

which is HS if and only if the functions al  and a2 have the same value at 00, so that 
a l  - a2 E 9. This is therefore a necessary condition, as cancellation with other terms 
is not possible. So with this condition we can replace a2 by a 1  = a and the first term 
becomes 

a - p w ; ' ~ y p w ; ~ -  m,w;'am,o;'+pw;'a -apw;' 
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Since pw;' and m l w ; '  are bounded, it is enough to show that [ p w ; ' ,  a] and [m,o;' ,  a ]  
are HS. The kernel of the first is, putting m = m,:  

As in proposition 1, ( p - q ) & ( p - q )  is in Y(R) in p - q ,  and the product is therefore 
HS. The only condition is a ' €  Y(R), true as W is a constant outside a compact set. 
Similarly [ m u  l . l ,  a ]  is HS. This deals with the first term. 

This deals with the second term too, since @;'(a2-  al)(l + p w ; ' )  is HS if az(=) = 
a1(03). So again we may replace a1 and a2 by a say, when the second term becomes 
m l w ; l [ a , p ] w ; l + m l [ w ; l ,  a ]  which is HS. 

A harder term is the third, involving P and two masses. If ml = m2, then this is 
similar to the first term: it is HS if and only if P1 = P 2  at CO; but this is then the condition 
that, at CO, W should be one of the exact rigid symmetries of the theory. 

If m, # m2 we must consider 

( P  1 - P 1 Pw + PO ; 'P I - pw ; 'P 1 PO - :U ; 'P  1 ; I )  + P 1 pw - P 1 PW 

+ p w ; I p ,  pw;' - p w ; l p l p w ; '  + m?w;'plw;' - m,  m2w;'P20; ' .  

We have arranged to cancel P1, which is clearly not HS, under the general conditions 
of theorem 3(b), i.e. P1 +constant at CO. Indeed, the term ( ) is treated as for the first 
term. 

If PI or P2 is non-zero at 00, at least one of the remaining terms has a kernel with 
a l / ( p  - q )  singularity at p = q ;  the kernel is an analytic function of p and q, so to be 
HS this singularity must cancel identically for all values of the other variable, say p + q. 
This is not possible; hence PI and P2 vanish at W .  Conversely, if Pl and p2 do vanish 
at CO, the remaining terms can be paired 

p l p ( w ; '  - w ~ ' ) + p w ~ l ~ l p ( w ~ ' - w ~ ' ) +  m : w ; ' P l w ; ' -  mlm2w;1p2w;1  

and each of these is HS as P1, P2 E SP(R). 
The remaining five terms are then very similarly shown to be HS. 
We conclude that T~~ is spatial if and only if Tuv(oo) is an exact rigid symmetry. 
This proves proposition 3. 

When n = 1, and a lr  a2 converge to 1 at 00, then the implementability of T~ was 
proved in [ 7 ] .  This method does not work, however, when a l ,  a2+ -1 at +a, which 
is spatial and actually gives the 'one-soliton' state. 

Proof of proposition 4. We now show that if all masses are positive then the gauge 
solitons are topologically unstable, in that the index of P+ WP,, where W = Tu, 
contains no axial part, is zero. 

Proof: It is easy to show that P," is a norm continuous function of m when m>0.  
The same goes for P+ =ei P,"i as a function of ml,  . . . , m, in the region mk > 0. Then 
the estimate 

It p+ wp+ - Q+ WQ+ II 2 I /  p+ - Q+ II 
shows that P+ WP+ is a continuous Fredholm family as discussed by Atiyah [21]. 
Therefore for fixed W the Fredholm index is independent of m l , .  . . , m, as long as 
these are greater than zero. Let us then move them to become all equal. 
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Let us now move W through the set of C" maps X :  R +  M(2n),  constant outside 
some compact set. The operator norm of X on L2(R, C2" )  obeys 

llxll s lllXlll= (2n)'sup sup I x J x ) ~ .  

II p+ WP+ - P+XP+ll II w - x II 111 w - Xlll 

x 1.1 

Then the inequality 

shows that the set of Fredholm operators P+ WP+ is again a continuous family, and 
so the Fredholm index is constant on any 111 / / I connected set of spatial gauge transforma- 
tions. We note that from proposition 3(b), since the masses are now all equal, any 
value of W(c0) ensures that P+ WP, is Fredholm. We can now move W continuously 
in ill IIl-norm to an operator near the identity: e.g. let 

W ^ ( x ) =  W(x), X s b - A  

W"= W'((X)= W(b-A), x > b - A + &  i /llWA(x)- W(b-A)l(/<&, if b - A < x < b - A + s  

for E small (this E is needed to ensure W E  C" and is not just continuous). This can 
be done so that WA is 111 ([(-continuous in A. 

Then as A moves from 0 to b - a  we move continuously to a matrix, the identity 
outside [a, a + E], for which P+ WbP+ has zero index for some E.  

Proof of proposition 5. If the masses are all zero, the energy projections take the form 

O )  
p,  = (y 

@(Fp) 

acting on each direct summand L2(R,  C2)i ,  i = 1,2, .  . . , n. We can then follow Carey 
et a1 [7] replacing C2 by e'". The separation into top and bottom components of each 
G I , .  . . , JI, is a relativistically invariant notion. Consider then the n top components 
and subject them to a unitary transformation U(x), with U(-OO) = 1, = V(CO),  needed 
for T~~ to be spatial (proposition 3(a)). The bottom components we treat separately, 
acting by the unitary operator V(x). If V =  U we have a gauge transformation, and 
if V = U*, an axial gauge transformation. Because U (  *OO) = 1 we can regard U as a 
function on T, the compactified R, by the mapping r = 2 tan-lx, x E R, t E [-r, T). This 
induces a unitary map S :  L2( T, C " )  + L2(R, C") defined by 

(sf)k(X)=fk(2tan-l x ) / (x- i ) .  

The projections E ,  = S-'P,S act on L2( T, C " )  and project it to the Hardy space of 
functions on T" with *'ve multiple Fourier coefficients. As usual S-' US = @ takes 
the form 

( E + k E +  E-kE+ E-kE- E+@E- > *  

Namely, E+ @E- is HS and E+ @E+ is a Toeplitz operator of the form discussed by 
Douglas [22]. As remarked in [7], this shows the implementability of these gauge 
transformations with no need to compute the kernels explicitly. 

We now apply the result [22] or [21,23], showing that the index of E+ @E+ is 
minus the winding number of det U about the origin. As in [22], this index is unchanged 
if we move U through unitary matrices, so that all the wind is in, say, t,!~,. We can 
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then use [7] to identify the index as the net number of right-going particles (antiparticles 
counted negatively). Moving U back to a general element with the same index needs 
an implementable automorphism creating no charge (LabontC [ 9 ] ) .  Hence the winding 
number of det U for a general U is minus the charge created. 

Similarly, the bottom component V is related to the net left-going charge. To be 
consistent with parity, charge is this time equal to the winding number (i.e. minus the 
winding number from right to left, as the particles are now left-going). 

Proofofproposition 6. For the boson model 4 we follow mainly [ 1 2 ] .  The one-particle 
space is e:=, L2(R, R) ,  subjected to real symplectic transformations, induced by 

cos 6 sin 6 
@ = (  

of the form 

yi  = ( ~ ~ + m f ) ” ~ ,  and T acts on (q5], 42, T,,  T,). The Shale criterion is that, to be 
spatial, 1 - T‘T must be HS. We compute 

c = cos 6(x), s =sin O(x). 

The diagonal terms will be shown to be of the form 1 + HS using c2 + s2 = 1, if and only 
if 6(m) = n r .  We first push the terms involving the mass difference onto the terms 
involving s, thus: 

sy;2s = sy;2s + s( y;2 - y;2)s  

sy;,s = sy;2s + s( y;2- y i 2 ) s  

sy:s = sy:s + s( y: - y:,s 

sy:s = sy:s + s( y :  - y:,s 

for 1 , l  

for 2 , 2  

for 3 ,3  

for 4,4.  

Then the 1 , 1  term is 

YlcY;2cY, + YlsY;*sY, 

= Y,[C, Y;21cY,+ YlY;2c2Y,+ Yl[S,  Y;*IsYl+ Y1Y;2s2Y,+ Y l s ( Y ; 2 -  Y;2)sY, .  

Since y ,  y;’c2y, + y l y ; 2 s 2 y l  = 1 ,  it remains to show that every remaining term is HS if 
Q = n n  when m, # m,, and for any value of this limit if m ,  = m,. 

To analyse the first term we note that whereas c y ,  is not bounded, c y ,  = [c ,  y , ]  + y l c ,  
where [c ,  y , ]  is bounded; its kernel is 
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Change variables to t = :( p - q ) ,  k = :( p + 4 ) .  Then the kernel of [ c, y l ]  is 

2t  t 2 + m 2  2 t  t 2 + m 2  

Since t C ( 2 t )  E 9’(R), and the { }-factor lies in L3 as a function of k, this operator is 
compact. Similarly [c ,  y 2 ] ,  [s, y l ]  and [ s ,  y 2 ]  are compact. Thus we may write 

Yl[C, Y;21cYl = Y l [ G  Y;21Ylc+ YJC,  Y;21[c,  Y l l  

Y l [ 4  Y;21sYl = Y l [ %  Y;21Yls+Yl[s ,  Y;21[s, Y l l .  

Since c, s, y;’[c,  y l ]  and y; l [s ,  y , ]  are bounded, it is enough to show that y , [ c ,  y ; * ] y l  
and yl[s, -yy2]y l  are HS to deal with these terms. In the variables t, k the kernel of 
Y l [ G  Y;*IYl is 

t - ’ [ ( (  t +  k ) 2 +  n ~ ; ) l ’ ~ ( (  t - k)’+ m;)-1’4- ( (  t +  k)’+  VI:)-"^(( t - k)’+ m;) l i4 ] f c* (2 f )  

= ( 1 / 2  k + O( 1/ k2)) t t ( 2 t )  as k + m .  

This lies in L2(R2) since t ? E  9’. Similarly y l [ s ,  y ; 2 ] y l  is HS. 

The mass-difference term can be written 

Since s and y ; l [ s ,  y l ]  are bounded, it is enough to show that y l s ( y i 2 -  y T 2 ) y 1  is HS. 

Its kernel is 

( p 2 +  n ~ : ) ” ~ s ^ ( p  - q ) [ ( q 2 +  m:)-1’2- ( q 2 +  m:)-”2](q2+ m:)”4 

which is ;( t ) (  mi  - m:)O( l / k 2 )  as k + CD, which is HS. 

Notice that we d o  not get a factor t ,  so we need s*( t )  E Y and cannot use ti( t )  E 9’. 
So far we have shown that the ( 1 , l )  term is of the form 1 + HS if Q = n n .  If, however, 

Q Z n r ,  then all terms are HS except y l s (  y i 2  - ~ ; ~ ) s y , ,  whose kernel 

d k  ( p 2 + m : ) I i 4 ? ( p -  k ) [ y ; 2 ( k ) - y ; 2 ( k ) ] s * ( k - q ) ( q 2 + m : ) ” 4  

has a ‘pinch’ singularity at p = q, coming from the factors 5 d k / (  p - k - is)( k - q + iE). 
This is not removable, and so this term is not HS, unless m, = m2, when it is zero. For 
the ( 1 , 2 )  off-diagonal term, we write 

YlcY;2sYl - YISY;*cYl = Y l c [ Y ; 2 ,  s ly ,  - Y l S [ Y Y 2 ,  CIY, + Y, sc (Y ; ’  - r;’rl). 
The first two terms have been shown to be HS. If sc has compact support, then Y 
and the last term has kernel O( k”2)s^c(2 t )0(  k-1’2)( mi - m:)/ k 2  as k + 00, which is in L2. 
But if sc Z 0 at a3 we get a pole l / t  which is not cancelled unless m1 = m2 (when this 
term vanishes). 

Similarly all the four terms written ( 2 ,  l ) ,  ( 2 , 2 ) ,  are HS or 1 + HS if Q = n n ,  otherwise 
not. 

For the terms ( 3 , 3 ) ,  (3 ,4)  and (4 ,4)  an  entirely similar calculation can be done: 
one uses that y;’[c,  y:]y;’ E 9’ and y l [ c ,  y ; ’ ]  is bounded, etc. 
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